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Introduction '

e Consider an n®® order single-input /single-output system G(s):

A x(t)+bu(t) - G(s) =c(sI, —A)"'b

_ n(s)
cx(t) = a6

e u(t) € R: input, x(¢) € R": state, y(¢) € R: output

e AcR"™"™, b,cl ¢ R". Will assume R(\;(A)) < 0

e Need for improved accuracy — Include more details in

the modeling stage
e In many applications, n is quite large, n ~ O(10°,107),

e Untenable demands on computational resources —




Model Reduction Problem: Find
x-(t) = A,x.(t)+ b, u(t)
yv-(t) = cpx.(t)

e where A, ¢ R"™*", b,,cl € R", with » < n such that

1. ||y — y-|| is small.

2. The procedure is computationally efficient.
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e GG, (s): used for simulation or designing a reduced-order controller



Model reduction of Serkan
from n=3 down to r=2

Cascades, Blacksburg, VA




e Model reduction through projection: a unifying framework.
e Construct II = VZT', where V,Z € R™*" with ZTV =1,

- _ T T _
%, = ZTAV x,.(t) + ZTbu(t), v, (t) = cV x,.(1)
=A, :=b,. :=cC,

What is the approximation error e(t) :=y(t) — y,(¢)?

e GG(s): Associate a convolution operator S:

S u(t) o y(t) = (Su)(t) = (g * w)(t) = / g(t — T)u(r)dr

o g(t) = ce'b for t > 0: Impulse response.

e Transfer function: G(s) = (£g)(s) = c(sI — A)~'b.



The H., Norm : 2-2 induced norm of S:

G, = sup P2 — s 12412
=708 Tulls = Tl

= sup |G(yw)l|;
wER

|G — G, ||.= Worst output error [ly(t) — y,(Dll, ¥ [u(®)ll, = 1.

The H,; Norm : | L5 norm of g(t) in time domain:

o0 + o0
IG(3) 5y, = [ tracele (0t = 5 [ trace[G" (u) @)l

G I,

(dB)

I G(w) |l

1G@s) I,

10 10°
freq (rad/sec)




Motivating Example: Simulation I

A Tunable Optical Filter: (Data: D. Hohlfeld, T. Bechtold, and
H. Zappe)
e An optical filter, tunable by thermal means.

lensed fiber

T e Silicon-based fabrication.

e The thin-film filter: mem-

brane to improve thermal iso-

collimated beam : B! lation
s & resistor

e Wavelength tuning by ther-
mal modulation of resonator
R optical thickness
e The device features low power consumption, high tuning speed
and excellent optical performance.




Modeling:

e A simplified thermal model to analyze/simulate important

thermal issues: 2D model and 3D model

Meshed and discretized in ANSYS 6.1 by the finite element
methods

The Dirichlet boundary conditions at the bottom of the chip.

A constant load vector corresponding to the constant input
power of of 1 mW for 2D model and 10 mW for 3D model

The output nodes located in the membrane

Ex(t) = Ax(t)+bu(t), y(t)=cx(t)

2D: n = 1668, nnz(A) = 6209, nnz(E) = 1668

3D: n = 108373, nnz(A) = 1406808, nnz(E) = 1406791




Motivating Example: Control I

Optimal Cooling of Steel Profiles in a Rolling Mill :

Data: Peter Benner




Different steps in the production process require different

temperatures of the raw material.

To achieve high throughput, reduce the temperature as fast as
possible to the required level before entering the next

production phase.
Cooling process by spraying cooling fluids on the surface

Must be controlled so that material properties, such as

durability or porosity, stay within given quality standards

Modeled as boundary control of a two dimensional heat

equation.

A finite element discretization results in

Ex(t) = Ax(t) + bu(t), y(t)=-cx(t).

n=179,841: nnz(A) : 553921, nnz(E) : 554913




Model Reduction via Interpolation I

Rational Interpolation: Given G(s), find G, (s) so that

G- (s) interpolates G(s) and certain number of its derivatives

at selected frequencies o in the complex plane

(—1)7 P/ G(s) (—1)7 d¥Gp(s) for k=1,...,K,

]' ]' dS] S:O-k7 andj:1,,J

= c(opI — A)~U+Db:
S=0L

= j*" moment of G(s) at oy.

Why to choose model reduction via rational interpolation?




Generically, any reduced model G,.(s) can be obtained via

interpolation.
Interpolation points = Zeroes of G(s) — G.(s).
BUT:

Prob-1: What is a good selection of interpolation points?

Similar to polynomial approximation of complex functions.

Recall: Trying to match the moments: c(o,I — A)~U+Db

Moments are extremely ill-conditioned

Prob-2: Construct G, (s) without explicit moment computation

Prob-2 easier to tackle using rational Krylov framework
(Skelton et al. [1987], Grimme [1997]):




e Given r interpolation points: {o;};_,
e Set V= Span [(c1I—-A)"'b, -+, (0, I—A)"'b |, and
e Z=Span (71— A")" e - (G I-AT) ! |, 2TV =1,

e A, =7Z"AV, b, =Z"b, ¢, =cV

— | G(0;) = G,(0;), and %G(s) = %Gr(s)

S=0; S=0;

e Moment matching without explicit moment computation
e Still to answer: How to choose o;7
e 0, = —)\;(A) (Antoulas/G [2003]). Effective but not optimal.

e Does there exist an optimal selection?

14



Optimal H,; approximation I

Problem: Given a stable dynamical system G(s), find a

reduced model G,.(s) that satisfies
G,(s) =arg min HG(S) — G(S)H

deg(G) = r
G : stable

Hy

e Existence of a global minimal:
— Exists in the SISO case
— Not known for the MIMO case

e General approach: Find G,.(s) that satisfies first-order

necessary conditions: Wilson [1970], Meier and Luenburger [1967],
Hyland and Bernstein [1985], Yan and Lam [1999], ...




Framework of Wilson [1970] I

e Given G, (s) = c,(sI,
Ge(s) :=

— A,)"'b,, define the error system

G(s) — G,.(s) = c.(sI — A.) 'b,

e Let P, and Q. be the error gramians:

QeAe + AZQe =+ CZCe =0

A.P.+P.A" +b.b! =0,

P
P,

P
Pao

Y

Q.

Qi Qi

T
Q1o

Q22

¢ |Gc(s)|l3, = cePecl: = First-order necessary conditions:

PL,Qis + P2Qoo
Q51F2b + Q22b7“

c,Pay — cPqo




e Equivalently, V = P,P.)}, Z = —Q2Q;, and
A, =Z"AV, b, =Z'b, ¢, =cV.
e H, Iteration:
1. Choose an initial G, (s) = c,(sI, — A,) " 'b,.
2. Compute P, and Q.
Define V = P3P5,), Z = —Q12Q5;
Let A, =Z"AV, b, =Z'b, c,=cV.

ool W

Return to Step 1.

e Two Lyapunov equations at each step.

e Similar framework by Hyland and Bernstein [1985]

17



Framework of Meier and Luenberger [1967]

e Let G,.(s) = c,(sI, — A,.) b, solves the optimal Hy problem
o Let \; = Ai(A,), i.e. the Ritz values.

e Mirst-order conditions:

G(—\) = G,(=)\;), and %G(s) — iGT(s)

SI—S\Z' dS 8:—5\1'

e Match the first two moments at the mirror images of the Ritz

values.

e First-order conditions as interpolation.

4

e Rational Krylov Framework




Theorem: The two frameworks are equivalent.

Proof: Starting point for Lyapunov — Interpolation Framework:

Lemma: (Gallivan et al. [2004], Antoulas/Sorensen [2002))
Let V solves AV + VAL + bb! = 0. Then,

Ran(V) = Span |(—A I— A)~'b, -+, (AT — A)_lb} .

Starting point for Interpolation — Lyapunov Framework: Model

reduction via rational Krylov projection.




e For the Hy problem, simply set | o; = —S\z-

e \; NOT known a priori = Needs iterative rational steps

An Iterative Rational Krylov Algorithm (IRKA):
(G, Beattie, Antoulas [2004])

1. Choose o; fori=1,...,r.

2. V=Span [(c1I—-A)"'b, -, (c:I—A)"'b ],

3. Z=Span [(c1 I - AT)"lct, ... (a7 I—-AT)" 1T ], 27V =1,.
4

. while [relative change in o] > €
(a) A, =ZTAV,
(b) 05 «— —Xij(Ay) fori=1,...)r
(¢c) V=Span|[(c1I—A) b, -+ ,(o,I—A)"!b].
(d) Z =Span [(c1I — AT)~ 1T, ... (G I—-AT)"1cT |, ZTV =11,
5. A, =ZTAV, b,=ZTb, ¢, =cV

e Upon convergence, first-order conditions satisfied via Krylov

projection framework, no Lyapunov solvers




e No methods guarantee convergence to global minimum.

e Question: Global minimum of a restricted Ho minimization

problem?

Corollary: (Gaier 1980)
Given stable G(s), and the stable reduced poles o, ..., a,, define

 Bo+Gis+ -+ Brs”
o (s—a1)...(s—ay,)

G(s) :

Then ||G(s) — G(s)]||s, is minimized if and only if

G(s) = G(s) for s=—-ai,—ag,...,—0.

e Upon convergence, IRKA minimizes the Hy norm of the error
system among all possible reduced models having the same

reduced poles A;.
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Convergence 7

e Understood better and better every day !!!

e A fixed point iteration:

{a#k“)} _f ({aﬁ)}) ~ I+ — (H<k>)

Usual outcome is (numerical) convergence in 4 — 5 steps

Convergence failure in rare circumstances.

Newton Iteration Framework:
— Jacobian J: Sensitivity of A\;(A,.) wrt {o;}

— Requires solving an r X r generalized eigenvalue problem

(o} = {o}® — @4 3) 7 (o} + (n(aY).




Stability ?

A, = ZT AV nonnormal reduced order model

— Reduced order stability not guaranteed in general.

But, very hard to force convergence to unstable model

(occasional unstable models can occur at intermediate stages)

Fairly robust with respect to initial shift selection.

Gugercin [CDC-2005]: Replace Z by QV (VI QV)~! where

ATQ+ QA+ cfec=0.

— implies stability.



EXTREMELY small order benchmark examples

Model

IRKA

GFM

OoOPM

BTM

FOM-1

4.2683 x 10— 1

4.2709 x 10— 1

4.2683 x 10— 1

4.3212 x 10— 1

FOM-1

3.9290 x 102

3.9299 x 192

3.9290 x 102

3.9378 x 102

FOM-1

1.3047 x 10— 3

1.3107 x 1973

1.3047 x 1073

1.3107 x 103

FOM-2

1.171 x 10— 1

1.171 x 10— 1

Divergent

2.384 x 10— 1

FOM-2

8.199 x 10— 3

8.199 x 10— 3

8.199 x 10— 3

8.226 X 103

FOM-2

2.132 x 10~ 3

2.132 x 10— 3

Divergent

2.452 x 10~ 3

FOM-2

5.817 X 10— °

5.817 X 10~ °

5.817 X 10~ °

5.822 x 10— °

FOM-3

4.818 x 10— 1

4.818 x 10— 1

4.818 x 10— 1

4.848 x 10— 1

FOM-3

2.443 x 101

2.443 x 101

Divergent

3.332 x 101

FOM-3

5.74 X 102

5.98 X 102

5.74 X 102

5.99 x 102

FOM-4

1

9.85 x 102

9.85 x 102

9.85 x 102

9.949 x 101

¢ GFM: Gradient Flow Method of Yan and Lam [1999]
e OPM: Optimal Projection Method of Hyland and Bernstein [1985]
e BTM: Balanced Truncation Method of Moore [1981]
e FOM-1: n =4,

FOM-2: n=7, FOM-3: n=4, FOM-4: n =2,




ISS 12a Module.

o n=1412. Reducetor =2:2:60

e Compare with balanced truncation

Comparision between IRKA and BT Evolution of IRKA for r=2
6x10 T T T 1 T T T T
~
—
)
T 05K
0
4
0 1 T 1 1 1
0 1 2 3 4 5 6
= 136
o
a ~, 135
IN BT BH
) o 134F
> (6
= £
T . £ 133F
° 10 | B
D: 132 1 1 1 1 1 1
0 1 2 3 4 5 6
/ 5 3
5
IRKA IN o
)
% 1k
[}
3x1072 I I 1 I I g 0 1 1 1 I I I
0 10 20 30 40 50 60 0 1 2 3 4 5 6
r: reduced order Number of iterations
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Part I: Conclusions and Future Work: I

Equivalence of first-order conditions for the H2 problem

Iterative Rational Krylov for optimal Hs2 reduction
— First-order conditions while staying in Krylov framework

— No Lyapunov equations need to be solved

Good Ho performance as well (Zolatorjov Problem (Beattie [2005])).
Some open issues remain for convergence and stability.

Newton’s Iteration Formulation

Application to controller reduction: Gugercin/Antoulas/Beattie [2005]

Variations that guarantee stability (Gugercin [2005])

Find another name and acronym better than IRKA




Inexact Solves in Krylov-based Model Reduction

Need for more detail and accuracy in the modeling stage =
System dimension n: O(10°%) or more =
(I — A)v = b cannot be solved directly
Inexact solves need to be employed in constructing V and Z

Questions:

1. What are the perturbation effects on interpolation?

2. Robustness with respect to the inexact solves?

3. What are the effective preconditioning, restarting strategies?

4. What is the effect on (the optimality of) the reduced model?




For simplicity, consider the one-sided projection, i.e. V = Z.

Let v; be an inexact solution for (¢;,I1 — A)v, =b
(O'jI — A)\Afj — b = (Sbj with

Define  dv;:=v; —v; = (0;1— A)"'6b;, and

K:=[(o:I-A)"'b+évy, - (6,I-A)'b+dv, .

Inexact Krylov-based reduced model obtained by

AN AN

A, =V AV. b,=V'b, ¢, =cV, where V V=1I,.

AN

where V is an orthogonal basis for Range(K)




Theorem: Given the above set-up,

c (oI, — A,) " 'b, c(o;I, — A)"'b + etwa
c(o;I, — A)~! (b + Ab;)

Ctud c|(oL, — A~ V(o1 - AT)—lvT} 5b;.

Ab;, = [I,— (0,1, — A)V(o;I, — A,)"'V |6b.,.
® crq: Forward error, Ab;: Backward error
e How well V(0,1 — A,.)"'V?! approximates (o,I, — A)~!
e Eixpect optimal model to be robust with respect to inexact solves.

e Same analysis valid for the two-sided projection as well.




e GMRES:

1. The same Krylov subspace for each (0,1 — A)v; =b
AWk = Wk—l—lﬁk = min HO’ji — ﬁk — ||b||81H

. Span{v,}’_; is important, rather than each v;
—> min |[(oer1I— A)x — D]

x1xq1,...,Xy

3. Two-sided case: BiCG, ...

e Preconditioning:

1. If 0 is close to 041, can re-use preconditioners for different

linear systems

2. Cost of recomputing vs cost of using a close-by

preconditioner




Inexact IRKA (I-IRKA) I

IRKA requires solving 2r linear systems at each step
= Expensive if n = O(10°)

Recall: {o;} converge fast

4

Use the solution from the previous step as an initial guess for
the next step

Expect faster convergence for a fixed tolerance value

Optimal reduced model: Expect robustness




Example: Optimal Cooling of Steel Profiles ( P. Benner)

¢ G(s) =c(sE - A)"1b, n = 20,209
e Bad shift selection: o; = logspace(—8, —4,6)
e r = 6 via Rational Krylov (RK) and Inexact-RK (I-RK).
¢ I-RK uses GMRES with tol = 107

Bode Plots of H(s), H 1(s) (RK), and Hz(s) (I-IRKA)

10 °F

[ HGW) |

10 °F

IH(S) - H (5) |, =218 x 10
IH(S) - H () |, =242 107

IH,(s) - H,(s)ll,=9.18 x 107*

Il Il Il

-6 10—4 -2 0

frequency (rad/sec)

32

Errors in the computed first-moments

10

T

T T L e e

Relative error

Error

10°F

/

Absolute error

/
}.

Ll L ol

-8

10

107

-6 -5 -4
10

Errors in the computed second-moments

T

T T T

Error

Relative error




e Optimal {o;} obtained via IRKA
e Use these {o;} in I-RK.
o I-RK uses GMRES with tol = 1074

Bode Plots of H(s), H 1(s) (IRKA), and H 2(s) (I-IRKA) ) Errors in the computed first-moments

Relative error

/

Absolute error

-3 -2 -1

10 10

Errors in the computed second-moments

IH(s)=H,(S) [l = Hs) -H, ()l | Relative error
=156 x107

IH,(0) - H8)l, = 182107

Absolute error

frequency (rad/sec)




e Same model with n = 79,841 (Finer discretization)
o r =6 via IRKA and I — IRKA (tol =5 x 107°)
e IRKA: Initial guess from the previous step

. Amplitude Bode plots of H(s), H 1(s) and H 2(s)
T T T

10 ¢

|
10 1072
frequency (rad/sec)

Total Number of GMRES steps at the k th teration

Number of GMRES steps

10 12

Iteration Index

o |[H(s) — Hi(s)|loo = [[H(s) — H(s)[|oc = 6.01 x 1077,
HHl(S) — HQ(S)HOO = 3.01 x 10_5.




Part II: Conclusions and Future Work I

e n >> 10%: Forces usage of Inexact Solves in Krylov-based reduction

e Perturbation effects:
— Backward and forward error analysis framework
— Good/Optimal shift selection robust with respect to inexact solves
— I-TIRKA

+ (Locally) optimal reduced models for n > 10% without user
intervention

x Acceleration strategies
e Open issues:
— Global ‘H2 and/or Hoo perturbation effects
— Modifications to GMRES, effective preconditioning strategies

— Scalable parallel versions
x A large-scale easy-to-use model reduction toolbox
x Modify the algorithms to fit into the framework of, e.g., Trilinos
*x Implementation on Virginia Tech.-System X




Alexel Nikolaevich Krylov

¥

e

SYHNOUTA CCCP

R

AKAAEMUK A HIKPLIAORB 18631945

http://members.tripod.com/jeff560/

[1931] "On the numerical solution of the equation by which, in technical matters,
frequencies of small oscillations of material systems are determined"
to compute the characteristic polynomial coefficients.



Controller reduction for large-scale systems I

e Consider an n®™® order plant G(s) = c(sI — A)~'b

e n'1 order stabilizing controller: K(s) = cx(sI — Ag) 'bg +dg

e LAOG, Hy control designs = n.,=n =
(i) Complex hardware (ii) Degraded accuracy

(iii) Degraded computational speed

e Obtain K., (s) of order » < n, to replace K(s) in the closed loop.




Controller reduction via frequency weighting I

e Small open loop error | K(s) — K,(s)||,, not enough. =

e Minimize the weighted error:

IWo(s)(K(s) — Kr(s))Wils)|

oo

e How to obtain the weights W,(s) and W;(s)?

o If K(s) and K,.(s) have the same number of unstable poles and if

H[K(s)—Kr(s)]]G(s)[IJrG(S)K(s)]_lHoo < 1, or
[T +G()K(s)|TG(s)[K(s) = Ko (s)]]| . < 1,

—

—> K, (s) stabilizes G(s).




For stability considerations:
Wi(s) =1 and W,(s)=[I +G(s)K(s)] 'G(s) or
Wo(s) =1 and W;(s)=G(s)[I+G(s)K(s)] "
To preserve closed-loop performance:

Wi(s) = [T+ G(s)K(s)]"! and W,(s) = [I + G(s)K(s)] 'G(s).

Solved by frequency-weighted balancing (Anderson and Liu [1989],
Schelfhout and De Moor [1996], Varga and Anderson [2002] ).

Requires solving two Lyapunov equations of order n + n,.

AP +PAT +bb] =0, ATQ+ QA, +clc, =0,

A, b;: K(s)W;(s), A, co: Wo(s)K(s)
Balance P and Q.




Controller-reduction via Krylov Projection I

e How to modify IRKA for the controller reduction problem?

o Let Wi(s)=1 and Wy(s)=[I+G(s)K(s)] " G(s) =

e AxP+PA} +bgbr =0 AlQ+ QA, +clec, =0,

Ve

unweighted Lyapunov eq. weighted Lyapunov eq.
o 7 :IC(AT,CT,O'Z'), and V:IC(A,B,/LJ)

e Z and o;: Reflect W, (s): the closed-loop information.

o; = jw; over the region where W, (jyw) is dominant

e V and f;: Obtained in an (optimal) open loop sense.

(; : From an iterative rational Krylov iteration




An Iterative Rational Krylov Iteration for Controller Reduction:
1. Choose o; = jyw;, for i = 1,...,r where w; is chosen to reflect W, (jw).

. Z =Span [(o1I - ALl) ek -+ (0,1 — AL ) lck | with ZTZ =T,

2
3. V=12
4

. while [relative change in ;] > €
(a) A, =ZTAKV,
(b) pj «— —Xi(Ay) forj=1,...,7r
(¢) V=Span |[(mI—Ag) 'bg -+ (uI—Ag) bk | with ZTV =1,.
5. A, =ZTAKV, b,=2ZTbg, cr=cgV

Z = K,.(s) includes the closed — loop information -
II=7ZV

V = K,(s) is optimal in a restricted H, sense




International Space Station Module 1R:

e n = 270. G(s) is lightly damped =- Long-lasting oscillations.
e K (s) is designed to remove these oscillations. n, = 270.

-3 Impulse response of the closed-loop system
T T

x10° Impulse response of the open—loop system x 10
T T T T T

Amplitude
Amplitude

o

1
6
time (sec)

1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900
time (sec)

e Reduce the order to r = 19 using iterative Rational Krylov and

to r = 23 using one-sided frequency weighted balancing




e FWBR.: Frequency-weighted balancing with W;(s) = I
and W,(s) = [I + G(s)K(s)] " G(s).

e ITRK-CL: Iterative Rational Krylov - Closed Loop version:
o; reflect the weight W, (s).

Bode Plot of Wo(s) =T(s)=[I+ G(S)K(S)]_lG(S)
-30

35}

—-40

-45

(dB)

—50F - . 4

Singular Values

-55|

-60 |

-65

-70
10 N 107 10" 10° 10" 10 10°
Frequency (rad/sec)

e 0, = 7xlogspace(—1,2,10) rad/sec




—_

Singular Values (dB

Singular Values (dB)

ISS Example:

Bode Plots of reduced closed—loop systems

-15 :
:¥IRK*CL
—20f _— Iszo H
el = | Relative Errors
Hoo error
_s0| B 1
T — TFWZO 3.88 X 10
il I T — Tpwas 5.63 x 101
-l | / 1 T — TIRK_C1, | 1.47 x 101
| |
50 “H“\“ \\\\\\xi
|
_ssl H i Relative Errors
. ‘ ‘ ‘ ) ‘ Ho error
10" 10° 10" 10° 0
Frequency (rad/sec) T — TFW20 3.90 x 10
ISS Model: Error in closed—loop systems T — TFW23 1.88 X 10_1
-10 ; : :
—2
L T = Teyao | T — TIRK—CL 3.57 X 10
30 / J
—40 4
-50 g Weighted Errors
60 4 Ho error
-70 = W,L(K — KFW2O) 0.984 <1
—80 i WZ(K — KFW23) 0.416 < 1
oo ~__ (\ 1 W; (K — Kjgk—cL) | 0.365 <1
-100 L L
107" 10° 10" 10° 10°

Frequency (rad/sec)
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An Unstable Model:

e n=2000. K(s) of order n,, = 2000 stabilizes the model.

Impulse response of G(s)
70 T T T

Amplitude
w
o
T

Impulse Response of T(s)
0.5 T T T

Amplitude

-0.5 m
| | | | | | | | |

time (sec)

e K(s) has four unstable poles.
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e Reduce the order to r = 14: Stabilizing controller

e K, (s) has 4 unstable poles as desired.

Bode Plots of T(s) and T r(s) Impulse Response

T

Singular VValues
Amplitude

Bode Plots of K(s) and K r(s) Response to u(t)= sin (4t)

T T T T T T T T T T I I

Amplitude
1

Singular VValues

Ll
10 .
Frequency (radisec) time (sec)






